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Abstract

These notes describe, at an engineering level, some key points of implementing a
convolutional neural network (CNN). Such CNNs nowadays are extensively used in
various applications such as image recognition or text processing. Implementation
of these networks is a relatively straightforward task once the basic principles are
understood. Some of these principles are, however, not easily found in the literature
and the purpose of this report is to write-up some of the fundamental operations in
implementing convolutional neural networks from the ground up.

1 Introduction

Convolutional neural networks (CNN) are in high-demand for machine-learning applications.
Although they are based on somewhat older concepts, they have gained new attraction due
to the incredible increase in hardware performance where parallel computing [2], stream
oriented hardware extensions [18], and highly parallelized graphical unit processors (GPU)
[14] can be used to achieve unprecedented performance for larger size neural networks and
their inputs.

Convolutional neural networks are extensions of more conventional neural networks,
which are called fully-connected neural networks (FC). The literature on FC neural networks
is abundant. A theoretical introduction to some of the concepts can be found in [1]. A
detailed explanation with a corresponding Python implementation is available on-line [12].

A good introduction to CNNs is available on-line under [17], which omits however
some of the implementation details. A rather mathematically oriented background book
with terse notation is [8]. Chollet gives a very hands-on introduction to the use of CNNs
using the popular Keras framework [7, 5], but skims over some of the intricacies of the
technology. More details can be found in the concise write-up on convoluational neural
networks by Bouvrie [3]. Full details on the back-propagation algorithms can be found
in [9].

The basic concepts of neural networks, fully-connected or convolutional, include the
use of multi-dimensional arrays, also known as tensors of which we however ignore the
deeper algebraic properties. Thus, for us, a tensor simply represents a multi-dimensional
array of floating point numbers. A tensor of dimension 0 is a scalar, of dimension 1 a
vector, and two-dimensional tensors are known as matrices. Higher dimensions are used to
hold image data: a three dimensional tensor typically holds the Red-Green-Blue (RGB)
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planes of an image, thus being a 3-D tensor with a depth of three and width and height
representing the horizontal and vertical dimensions of the image. Black-and-white images
are 3D tensors with a depth of 1. Tensors for video data would be 4-D adding time as a
fourth dimension. See [5] for a good visualization of these data structures.

The necessary functionality for tensor manipulation can be found in packages such
as Python’s numpy [13] environment with some additional functionality typically found
in signal-processing extensions such as Python’s scikit [16] packages. These libraries are
generally based on optimized C or FORTRAN [11, 6] libraries which perform the compute
intensive operations. In some cases, computations are migrated to GPUs for additional
performance [14] - the payoff however varies according to the size of the tensors being
copied between CPU and GPU.

Implementing a tensor library is straightforward, due to the regularity of the tensor
data structure. Performance however is important and careful and correct optimizations
can be cumbersome and time-consuming.

As implied by the name, a key component in convolutional networks is the convolution.
Technically correct, however, CNNs are in fact using correlations - convolutions are related
to correlations by flipping the kernel which can be seen as a 180◦ rotation of a 2D,
symmetric, tensor.

Mathematically a two-dimensional correlation is defined as follows. Assume we have an
image I with a height and width of (hI , wI). Assume we have another 2D tensor, named
the filter F with height and width of (hF , wF ). Frequently we have hF = wF , i.e. filters
are symmetric and some caeses must be of odd height and width, with typical values of 3
or 5. The result of the correlation shall be called C and is also a 2D tensor with however
a different height and width (hC , wC) compared to the dimensions of the image I or the
filter F and depending on zero-valued padding around the image as well as the motions of
the filter, called stride.

Ignoring padding and striding, we can now formulate the equation for a 2D correlation:

C = I ⊗ F

C(i, j) =

hF−1∑
m=0

wF−1∑
n=0

I(i+m, j + n) · F (m,n)
(1.1)

Note that indices range from 0 to the corresponding dimension’s extent minus one; following
the convention of many programming languages1.

The corresponding equation for a 2D convolution is similar:

C = I ∗ F

C(i, j) =

hF−1∑
m=0

wF−1∑
n=0

I(i+m, j + n) · F (hF −m,wF − n)
(1.2)

We simply have reversed (”flipped”) the indices over the filter. Note that in the literature
the distinction between the use of correlation and convolution is often loose. Most popular
frameworks do supply both, a 2D correlation and a 2D convolution and the misuse of the
term ”convolutional” is probably a historical mistake. We thus use correlation consistently
beyond that point (see also [8] for some discussion on the topic).

The 2D correlation process can be visualized as sliding the filter F horizontally and
vertically over the image I and performing a dot-product between the re-arranged entries

1With apologies to N. Wirth.
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of the filter into a vector with the overlapped, also rearranged, entries of the image. We
slide the filter one pixel at a time, i.e. stride S = 1; the literature also describes the
process when the stride is greater than one. See figure 1.1 for an example.

Figure 1.1: Correlation of a 5× 5 image with a 2× 2 filter

Note that the output C is smaller than the image I - our sample kernel only fits four
times over the 5× 5 image when using a stride of one. This can be remedied by applying
padding i.e. surrounding the image with zero-valued pixels. The dimensions of the output
C can be computed as follows:

hC = (hI − hF + 2P )/S + 1

wC = (wI − wF + 2P )/S + 1
(1.3)

where P is the amount of padding around the image I and S the size of the strides,
assuming that both P and S are identically horizontally and vertically. Generally, we also
have hF = wF and odd.

Depending on the size of the paddings and assuming S = 1, we have the following
correlation modes2:

� valid : No padding of the image I. The output C dimensions are the corresponding
dimensions of the image minus the filter’s dimension plus one: hC = hI − hF + 1 and
wC = wI − wF + 1.

� same: The padding is (roughly) half of the filter’s width and height of zero valued
pixels around the image. In that case, the output C would have the same height and
width as the image I when S = 1, i.e. hC = hI and wC = wI . For identical filter
height and width, we have P = (hF − 1)/2 = (wF − 1)/2 which yields integer values
when hF and wF are odd.

� full : The image is padded with a frame of hF − 1 and wF − 1 zero valued pixels.
The output C has dimensions hC = hI + hF/2 + 1 and wC = wI + wF/2 + 1 and
thus larger than the input I.

As visualized in figure 1.1 the filter F when positioned at position (0, 0) of the image I
generates an output pixel C(0, 0):

C(0, 0) = I(0, 0) · F (0, 0) + I(0, 1) · F (0, 1) + I(1, 0) · F (1, 0) + I(1, 1) · F (1, 1)

=
1∑

m=0

1∑
n=0

I(0 +m, 0 + n) · F (m,n)

= [I(0, 0), I(0, 1), I(1, 0), I(1, 1)] · [F (0, 0), F (0, 1), F (1, 0), F (1, 1)]T

(1.4)

2To borrow Matlab terminology which appears to be widely accepted.
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in which the last line represents the dot-product between a row-vector based on the image
I and the column-vector based on the filter F . Implementations of this dot-product are
key to the performance of CNNs during training - during which the filters (weights) of
convolutional layers are tuned - and classifications which then use the trained filters.

Note that correlation and convolution are well-known techniques and various implemen-
tation speed-ups are known: the im2col mapping [17], the Fast Fourier Transforms (FTT)
based implementation [15] or the Winograd convolution [10, 19]. However, performance
also depends on the sizes of the images and filters and the underlying hardware character-
istics, i.e. memory bandwidths and performance and precision of the arithmetic operations.
It is thus no wonder that dedicated hardware is being built to optimize performance of 2D
correlations, also knowing that over 60 % of computation time during CNN training is
spent for correlation.

Similar to FC neural networks, CNNs are organized in layers. Layers, numbered from
0..(L− 1) with L− 1 indexing the output layer, can be of different nature:

� Correlation layer : These layers take an 3D tensor of size (dI , hI , wI)
3 and apply

correlation against c channels where each channel represents one filter F of size
(dF , hF , wF ). Note that in general hF = wF and that dF = dI , i.e. the depth of the
filters F match the depth of the input I. For each channel, we obtain one output
feature map C of depth 1 and, using valid correlation, of height hC = hI − hF + 1
and width wC = wI − wF + 1. This is illustrated in figure 1.2.

Figure 1.2: Correlation layer in neural network

3We use 3D shapes in the (z, y, x) dimensions for depth, height and width of a 3D tensor.
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The output map is then run through an activation function which is one of the well-
known mathematical functions such as sigmoid, tanh, RELU. These range between
0 . . . 1 or −1 . . . 1 and their derivatives are mostly well defined4. The size of the
tensor does not change during activation; it is determined by the correlation.

� Pooling layer : The pooling layer does a 2D reduction in the height and width
dimensions of a 3D input tensor; the depth remains unaffected (see figure 1.3).
Pooling choses a square area of an input slice of dimensions P × P and selects either
the maximum value over this square, the average value over the pooling square, or
an L2-norm value over the pooling area. The output size of the pooling layer is thus
a height of hC = hI/P and a width wC = wI/P . (Here we assume that the input
height and width dimensions are even.)

Figure 1.3: Pooling operation

We do not use activation functions associated with pooling layers - although some
authors have proposed such.

� Flattening layer : The flattening layer maps a 3D tensor resulting from either a
correlation or a pooling layer onto a 1D tensor (e.g. resize). This 1D tensor is then fed
into the fully connected layers via a weight matrix W as for regular fully-connected
layers..

� Fully-connected layers (FC): These map the output of their upstream layer onto a
pre-activation value a using a weight matrix (2D tensor) W l−1 which we associate
with the up-stream layer. We have al = W l−1 · yl−1 + bl where l is the index of the
layer in the network, yl−1 = xl is the output of the upstream layer (1D tensor) and
thus the input x to layer l and bl the layer’s bias. Applying activation to al, we have
yl = f(al) where f is one of the well-known activation functions.

Multiple fully-connected layers can be present until finally reaching the output layer
with index (L− 1) and yL−1 = f(aL−1) = WL−2 · yL−2 + bL−1. Truth values are then
compared against yL−1 and the loss (or its inverse, the cost) function is evaluated.

In terms of notation we use y to denote an output of a layer, x for input, and a for
the pre-activation values which are linear combinations of weights and input.

Correlation layers can alternate with pooling layers; these are separated from the
fully-connected layers via a single flattening layer.

Given the indexing of layers, we also talk about upstream and downstream layers,
following the data-flow of the forward training phase, i.e. data flowing from lower to higher
numbered indices.

4The exception being RELU at 0, for which the derivative is defined to be equal to 0.
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The cost function reflects the performance of the neural network. How close is the
output value, which is a 1D tensor, to the true value? There are various cost functions
used in practice. Most common is to use an L2 norm based difference between output and
true value: this can be differentiated and optimized conveniently.

During training we use N samples for which the truth values belong to some pre-defined
classes k, i.e. tnk to indicate the truth value of sample n belonging to class k. This is
thus typically a scalar (N0) which for a fixed set of classes K can be encoded as so-called
one-hot vectors tnk in which bit position k is set to 1 and all other K − 1 bit positions are
set to 0, i.e. in the vector tnk bit position k = 0 . . . K − 1 is 0 or 1.

The network’s output at layer L−1 is a vector yn ∈ RK of length K in which the value
at positionn k = 0 . . . K − 1 can be considered as a probability that the input belongs to
class k. A high value of ynk indicates that with some higher probability (or likelihood) the
input belongs to class k.

The total error EN ∈ R after all samples have been processed is defined as

EN =
1

2

N−1∑
n=0

C−1∑
k=0

(tnk − ynk)2 (1.5)

and for every sample n the corresponding error is

En =
1

2

C−1∑
k=0

(tnk − ynk)2 =
1

2
‖(tn − yn‖22 (1.6)

i.e. the squared norm of the differences between truth value tn and the network’s outcome
yn.

The trainable values in such a CNN are the values of filters in the correlation layers and
the weight matrices in the fully-connected layers. Depending on the input dimensions and
the number of channels, as well as the number of nodes in the FC layers, large numbers of
weights must be tuned during the training of a CNN.

The forward phase of the training is thus relatively straightforward, once the layers
are interconnected and initial random values for filters and weight matrices are chosen:
correlations, activations, poolings, and matrix multiplications in the FC layers are the key
operations using multi-dimensional arrays as the underlying data structure.

2 Backpropagation

Backpropgation is concerned with using the discrepancy between the network’s output
yn and the truth value associated with sample n, tn. The aim is to adjust the network’s
weights such that the error is minimized.

The error minimization is based on gradient descent [4], that is weights are adjusted
along the gradient of the error or cost function versus the weights δE

δW
. Successively

adjusting the weights will lead us to the minimum of the error function, i.e. where its
gradient becomes zero when assuming the error function is concave and has a minimum.

2.1 Fully connected layers

Assume a network layer l in which the output ylk at position k is a linear combination of
the layer’s input variables xli

ylk =
∑
i

wl−1ki x
l
i (2.1)
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where wl−1ki is the weight connecting input xli with the output ylk
5. Note that we have

xli = yl−1i . i.e. the input at layer l is the output of layer l − 1.
In matrix form we can write

yl = Wl−1yl−1 = Wl−1xl (2.2)

The weight matrix Wl−1 is of shape (K × I) with K the number of output nodes at layer
l and I the number of output nodes at layer l − 1. Column vector yl−1 has length I and
column vector yl is of length K.

Using the error function 1.6 and the chain derivation rule at the final output layer
L− 1, we have

δEn

δwL−2ki

= (yL−1nk − tnk)x
L−1
ni (2.3)

for a weight wl−2ki connecting input node xl−1i with output value yl−1k , n indicating the n-th
sample.

This can be split into an error term yL−1nk − tnk and the input variable xL−1ni linked by
the weight wL−2ki .

In a more general feed-forward network, we have the activation functions to consider.
We denote the pre-activation values with ak which are the linear combination of the
up-stream layer’s output yl−1i using weights wki at layer l − 1 connecting nodes i to k:

alk =
∑
i

wl−1ki y
l−1
i (2.4)

The pre-activation value ak at layer l is transformed using an activation function h(·)
i.e.

ylk = h(alk) = h(
∑
i

wl−1ki y
l−1
i ) (2.5)

We can use the chain rule for derivations to write

δEn

δwl−1ki

=
δEn
δalk

δalk
δwl−1ki

= δlk
δalk
δwl−1ki

(2.6)

introducing the error value

δlk =
δEn
δalk

(2.7)

i.e. the derivative of the n-th sample error En against the pre-activation value alk.

We note that
δalk
δwl−1

ki

= yl−1i since alk is a linear combination of yl−1i and wl−1ki s. Thus we

can write
δEn

δwl−1ki

= δlky
l−1
i (2.8)

a simple formula for the derivative δEn

δwl−1
ki

.

We can vectorize the notation for the Jacobian ∇Ew

∇Ew = δl · yl−1 (2.9)

using a matrix multiplication between the (K × 1) column vector δl and the (1× I) row
vector yl−1 yielding the (K × I) Jacobian matrix ∇Ew.

5The first index indicating the weight’s target, the second index indicates the weight’s source node.
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For the output layer L− 1 and node k we have

δL−1k = yL−1k − tk (2.10)

For hidden, fully-connected layers, we make use of the chain rule for partial derivatives:

δli =
δEn
δali

=
∑
k

δEn

δal+1
k

δal+1
k

δali
(2.11)

where the summation index k runs over all the units k at down-stream layer l+ 1 to which
unit i at layer l sends its value (see appendix A for a detailed derivation of δ in hidden
layers.).

Using δEn

δal+1
k

= δl+1
k and

δal+1
k

δali
=
δ(
∑

k w
l
kih(ali))

δali
= wlkih

′(ali) (2.12)

since in the sum over k only the term for ali is relevant, we find the following backpropagation
formula

δli = h′(ali)
∑
k

wlkiδ
l+1
k (2.13)

with wlki connecting node i at layer l to down-stream node k layer l + 1.
For multiple nodes in a layer, we can write a vectorized notation of this formula:

δl = ((Wl)Tδl+1) ◦ h′(al) (2.14)

with Wl the weight matrix connecting layer l to layer l+ 1 and of dimensions (K × I) and
thus dimensions (I ×K) for (Wl)T where I is the number of output nodes in layer l and
K the number of output nodes in layer l + 1. δl+1 has the output dimension of layer l+
and thus is of length K. The result of (Wl)Tδl+1 is then a (I × 1) column vector which is
element-wise multiplied (e.g. Hadamard product) with h′(al) also of length I.

Evidently these operations are straightforward to implement using tensor operations.

2.2 Correlation Layers

In the correlation layer of a CNN the input feature maps are correlated with one or multiple
kernels (filters) - which hold the trainable weights - and run through some activation
function h to generate the output feature maps. The input feature maps are of the same
depth as the learnable kernels. Each kernel generates a single output feature map, see
figure 1.2.

We can write

ylj = h

(
dI∑
i=0

yl−1i ⊗ kli,j + blj

)
= h

(
alj
)

(2.15)

where the index j indicates the j-th channel (filter) k generating the output plane ylj at

network layer l. j ranges over all chanels i.e. 0 . . . (c− 1). yl−1i is the i-th output plane of
the up-stream layer l − 1 which is correlated with mode valid with the j-th kernel kli,j at
layer l, with i ranging across the depth of the image dI which equals the depth dKof the c
kernels. Note that we write alj for the pre-activation tensor at correlation layer l, which
is the result of the correlation and addition of the bias blj. We denote the shape of the
output feature map ylj as (1, hyl , wyl). Note that the activation function h is applied on
the output of the correlation.
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2.2.1 Computing the Gradients in Correlation Layers

We assume that each correlation layer is followed by either a down-sampling (pooling)
layer or a flattening layer. To compute the error terms δlj in case of an up-stream pooling
layer, we need to consider the errors at layer l + 1 which are up-sampled to match the
dimension of layer l’s output feature maps.

Note that we associate one plane of the δ tensor with each of the c kernels (equivalently
with each output plane) and its shape matches the shape of the correlation’s output feature
maps and, in the z dimensio, has depth c.

The up-sampling operation is implemented depending on the precise nature of the
down-sampling (pooling) and can be accelerated by using appropriate caching of indices
(for max-pooling) or values (for L2 pooling) during the forward pass. In the case of
max-pooling, the down-stream error is back-propagated into the cell corresponding to
the maximum value in the output feature map at layer l, with other values set to 0.
For average-pooling, the down-stream error is evenly distributed into all the up-stream
cells. For L2-norm pooling, the error is distributed proportionally to each up-stream cell’s
contribution.

Taking into account the derivative of the activation function h′ applied to the pre-
activation values alj, we can write

δlj = h′(alj) ◦ up(δl+1
j ) (2.16)

The shape of sub-tensor δlj is (1, hyl , wyl) with j ∈ [0 . . . (c− 1)], i.e. it is identical with
the output shape of the correlation layer.

For the bias bj associated with channel j we have the gradient

δE

δbj
=
∑
u,v

(δlj)uv (2.17)

with u ∈ [0 . . . (hyl − 1)] and v ∈ [0 . . . (wyl − 1)].
The gradient for the filter weights can be expressed (see appendix B) as

δE

δklij
= corr2(xli, δ

l
j, ’valid’) (2.18)

that is we perform a 2-dimensional valid correlation6 between the i-th input plane xli,
corresponding to the i-th output plane yl−1i at up-stream layer l − 1, with the j-th error
plane δlj to obtain the gradients for the j-th channel’s i-th plane. (Recall that the kernels
have the same depth, indexed with i, as the correlation layer’s input x and we have c
kernels (or channels) corresponding to the number of output planes, indexed with j.)

2.3 Pooling layers

The pooling layer does a 2D reduction in the height and width dimensions of a 3D input
tensor; the depth remains unaffected. Formally we can write

ylj = down(yl−1j ) (2.19)

if we do not associate any activation function or bias with a pooling layer l. The number
of planes in the output tensor remains unchanged, the heights and widths are affected as
described on page 5.

6Similar to Python SciPy correlate2d() function or Matlab xcorr2.
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2.3.1 Computing the Error

There are no learnable parameters for a pooling layer, which we assume to be surrouned
up-stream and down-stream with a correlation layer. In the case of a flattening layer as
the down-stream layer, the backpropagation approach of the fully-connected layers can be
used (equation 2.14) where the derivation of the identity activation is 1.

The errors δlj are the errors for the pooling layer l which has an output tensor depth
equal to the number of channels in the up-stream correlation layer c which is unchanged
by the pooling layer.

We have

δli =
c∑
j=0

corr2(δl+1
j , rot180(kl+1

i,j ), ’full’) (2.20)

where l + 1 indicates the down-stream correlation layer.

Figure 2.1: Backpropagation of error in pooling layer

We take the j-th error plane δl+1
j of the down-stream correlation layer l + 1, having

depth 1, and fully correlate it with the rotated by 180◦ i-th planes of all the c filters of
the down-stream correlation layer to yield the i-th plane in δli.

This reflects the fact that the i-th input plane is connected via the i-th plane of the
j-th channel/filter to the j-th output plane.
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A Backpropagation in fully connected layers

Based on figure A.1 , we derive the formula for backpropagation of the error term.

Figure A.1: Backpropagation in fully connected network

The error for then-th sampleEn is defined as

En =
1

2

2∑
k=1

(ynk − tnk)2

=
1

2

[
(yn1 − tn1)2 + (yn2 − tn2)2

] (A.1)

Note that En is a scalar and, in some cases, can be computed using one-hot encoding of
truth values tn.

For gradient descent optimization of the error we want to adjust the weights which
influence the output of the network, given the input sample xn. We have

yn1 = w1yn3 = w1w3xn

yn2 = w2yn3 = w2w3xn
(A.2)

Note that we have no activation function for simplicity.
First we compute the derivative of the error En against the weight w1 using the chain

rule for derivation:
δEn
δw1

= (yn1 − tn1)
δyn1
δw1

= (yn1 − tn1)yn3
= (w1w3xn − tn1)w3xn

= δn1w3xn

(A.3)

The derivation for δEn

δw2
is similar.

For w3 we also apply the chain rule and first write out the derivation of the error En
against w3 which influences both, y1 and y2:

δEn
δw3

= (yn1 − tn1)
δyn1
δw3

+ (yn2 − tn2)
δyn2
δw3

= (w1w3xn − tn1)w1xn + (w1w2xn − tn2)w2xn

= δn1w1xn + δn2w2xn

=

(
2∑

k=1

δnkwk

)
xn

(A.4)
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B Backpropagation in correlation layers

Details on the backpropagation across correlation layers are hard to find. Some confusion
stems from the use of correlations versus convolutions in CNNs: the two are equivalent
when the filter operand in the convolution is rotated by 180◦.

In this section, we are deriving in detail the formulas for backpropagation across
correlational7 layers. This material is largely based on [9].

B.1 One dimensional case

Assume an input vector x = [x0, x1, x2, x3] correlated with a filter (aka. the weights)
w = [w0, w1] and a scalar b as our bias. The result of a valid correlation with no padding
and a stride of 1 is an output vector y = [y0, y1, y2]

y0 = w0x0 + w1x1 + b

y1 = w0x1 + w1x2 + b

y2 = w0x2 + w1x3 + b

(B.1)

We assume that δE
δyj

= δj, j = {0, 1, 2} are known from the down-stream network layer;

starting backwards with the output layer L− 1 and using the error function introduced
in 2.7. We are seeking the gradients of the error function against the bias δE

δb
, against the

filter coefficients (weights) δE
δwk

, k = {0, 1} and against the input values xi, i = {0, 1, 2, 3},
i.e. δE

δxi
= δ̄i. Note that δ̄i becomes the error propagated to the up-stream layer when the

influence of the activation function is included.
Using the chain rule we can write

δE

δb
=

2∑
j=0

δE

δyj

δyj
δb

= [δ0, δ1, δ2][1, 1, 1]T =
2∑
j=0

δE

δyj
=

2∑
j=0

δj (B.2)

For the filter weights we have

δE

δwk
=

2∑
j=0

δE

δyj

δyj
δwk

=
2∑
j=0

δj
δyj
δwk

(B.3)

that is, given the linear dependencies againt wj in equations B.1,

δE

δw0

= x0δ0 + x1δ1 + x2δ2

δE

δw1

= x1δ0 + x2δ1 + x3δ2

(B.4)

Since

δy

δw
=

x0 x1
x1 x2
x2 x3

 (B.5)

we can write

7Recall we consistently use correlation instead of convolution.
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[
δE
δw0
δE
δw1

]
= [δ0, δ1, δ2]

x0 x1
x1 x2
x2 x3

 =


x0
x1
x2
x3

⊗
δ0δ1
δ2

 (B.6)

That is to say that the gradient of the filter weights [ δE
δw0

, δE
δw1

] is nothing but a correlation
between the inputs xl with the δjs. Note that the input node index l ranges over the
dimension of the input x and j over the dimension of output y after the correlation with
mode valid, i.e. without any padding.

We now derive the formula used in the backpropagation of the δs between layers. Assume
correlation layer has 3 output nodes and thus [δ0, δ1, δ2]. How is the error propagated
backwards across the filter w = [w0, w1] into an upstream layer?

For the one-dimensional case, figure B.1 illustrates the case.

Figure B.1: Backpropagation of δ

We can write

δ̄0 = w0δ
l
0

δ̄1 = w1δ
l
0 + w0δ

l
1

δ̄2 = w1δ
l
1 + w0δ

l
2

δ̄3 = w1δ
l
2

(B.7)

which can be written as


δ̄0
δ̄1
δ̄2
δ̄3

 =


0

δ0
δ1
δ2
0

⊗
[
w1

w0

]
(B.8)

i.e. a full correlation between δ and a flipped filter w180 = [w1, w0] to obtain δ̄ for the
up-stream layer.
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B.2 Two-dimensional case

We now illustrate the case for two dimensions. We have

X =


x00 x01 x02 x03
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33

 (B.9)

as input matrix and a filter matrix

W =

[
w00 w01

w10 w11

]
(B.10)

The forward output matrix Y is

y00 = w00x00 + w01x01 + w10x10 + w11x11 + b

y01 = w00x01 + w01x02 + w10x11 + w11x12 + b

y03 = w00x02 + w01x03 + w10x12 + w11x13 + b

· · ·

(B.11)

i.e. the two-dimensional correlation Y = X⊗W + b which is written out as

yij =

(
1∑

k=0

1∑
l=0

wklxi+k,j+l

)
+ b, i ∈ [0 . . . 2], j ∈ [0 . . . 2] (B.12)

Note that the bias b is a scalar.
Again, we know δij = δE

δyij
from down-stream layers.

For the bias b we have

δE

δb
=

2∑
i=0

2∑
j=0

δE

δyij

δyij
δb

=
2∑
i=0

2∑
j=0

δij (B.13)

since
δyij
δb

= 1.
For the weights we have

δE

δwmn
=

δE

δyij

δyij
δwmn

= δij
δyij
δwmn

(B.14)

Using equation B.12 we have

δyij
δwmn

=
δ
(∑1

k=0

∑1
l=0wklxi+k,j+l

)
δwmn

(B.15)

Because of the linear dependencies between weights w and inputs x, all terms disappear
except when (k, l) = (m,n), thus

δyij
δwmn

= xi+m,j+n (B.16)
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and summing over (i, j) to obtain

δE

δwmn
=

2∑
i=0

2∑
j=0

δijxi+m,j+n (B.17)

In matrix notation we can write

δE

δw
=


x00 x01 x02 x03
x10 x11 x12 x13
x20 x21 x22 x23
x30 x31 x32 x33

⊗
δ00 δ01 δ02
δ10 δ11 δ12
δ20 δ21 δ22

 (B.18)

which is nothing but a valid correlation of matrix x with filter matrix δ.
We now proceed to the gradient

δE

δxmn
= δ̄mn =

δE

δyij

δyij
δxmn

(B.19)

Using equation B.12, we have

δyij
δxmn

=
δ
(∑1

k=0

∑1
l=0wklxi+k,j+l

)
δxmn

=
1∑

k=0

1∑
l=0

wkl
δxi+k,j+l
δxmn

(B.20)

The above conditions can be rewritten for the indices k, l

δxi+k,j+l
δxmn

=

{
1 if k = m− i and l = n− j
0 otherwise

(B.21)

We thus have
δyij
δxmn

= wm−i,n−j (B.22)

which combined with equation B.19 yields

δ̄mn =
2∑
i=0

2∑
j=0

δijwm−i,n−j (B.23)

For instance with m = 0, n = 0 we have

δ̄00 =
2∑
i=0

2∑
j=0

δijw0−i,0−j

=
2∑
i=0

δi0w0−i,0 + δi1w0−i,−1 + δi2w0−i,−2

= δ00w0,0 + δ01w0,−1 + δ02w0,−2

+ δ10w−1,0 + δ11w−1,−1 + δ12w−1,−2

+ δ20w−2,0 + δ21w−2,−1 + δ22w−2,−2

(B.24)
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Note the negative indices on some of the filter weights. We set the corresponding values
to 0 and thus can write

δ̄00 =

δ00 δ01 δ02
δ10 δ11 δ12
δ20 δ21 δ22

⊗
w00 0 0

0 0 0

0 0 0

 (B.25)

Eventually we can write


δ̄00 δ̄01 δ̄02 δ̄03
δ̄10 δ̄11 δ̄12 δ̄13
δ̄20 δ̄21 δ̄22 δ̄23
δ̄30 δ̄31 δ̄32 δ̄33

 =


0 0 0 0 0

0 δ00 δ01 δ02 0

0 δ10 δ11 δ12 0

0 δ20 δ21 δ22 0

0 0 0 0 0

⊗
[
w11 w10

w01 w00

]
(B.26)

In matrix notation we write
δ̄ = δ0 ⊗w180 (B.27)

where δ0 is a zero-padded matrix to implement a full correlation of the (unpadded) matrix
δ with the filter w rotated8 by 180◦.
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